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Abstract

A comparison is made between two variable flavor number schemes which
describe charm quark production in deep inelastic electron-proton scattering.
In these schemes the coefficient functions are derived from mass factorization
of the heavy quark coefficient functions presented in a fixed flavor number
scheme. Since the coefficient functions in the variable flavor number schemes
have to be finite in the limit m → 0 we have defined a prescription for those
processes where the virtual photon is attached to a light quark. Furthermore
one has to construct a parton density set with four active flavors (u,d,s,c) out
of a set which only contains three light flavors (u,d,s). In order α2

s the two
sets are discontinuous at µ = mc which follows from mass factorization of
the heavy quark coefficient functions. The charm component of the structure
function F2,c is insensitive to the different variable flavor number schemes.
In particular in the threshold region they both agree with the description in
fixed order perturbation theory presented in a three flavor scheme. However
one version does not lead to a correct description of the threshold behavior
of the longitudinal structure function FL,c. This happens when one requires
a non-vanishing zeroth order longitudinal coefficient function.

PACS numbers: 11.10Jj, 12.38Bx, 13.60Hb, 13.87Ce.
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1 Introduction

Charm quark production is one of the important reactions used to extract
the gluon density fg(x, µ2) of the proton in deep inelastic lepton-hadron
scattering, especially when the Bjorken scaling variable x is small. However
this is only true when the deep inelastic process is of the neutral current
type and the charm component of the proton wave function is negligible. In
this case the charm quark is produced in the so-called extrinsic way. For
neutral current processes with only light partons in the initial state this
means that the Born approximation in perturbative QCD is given by the
virtual vector-boson gluon-fusion process [1]. Notice that the light partons
consist of the gluon and the three light flavors u, d, s together with their
anti-particles. Furthermore if the virtuality of the exchanged vector boson
in deep inelastic lepton-hadron scattering satisfies Q2 ≪ M2

Z then the vector
boson is represented by the photon only and the contribution of the Z-boson
is negligible. Extrinsic charm production also receives next-to-leading order
(NLO) contributions from boson-quark subprocesses, which could hamper
the extraction of the gluon density. Fortunately this is not the case at HERA,
where the experiments [2], [3] are carried out at small x, because the gluon
density overwhelms the light flavor densities completely. Moreover the NLO
quark initiated processes are suppressed by at least one power of the strong
coupling constant αs(µ

2) with respect to the Born contribution to the boson-
gluon fusion reaction. The quantity µ in the running coupling constant and
the parton densities represents both the renormalization and factorization
scales respectively, because it is convenient to chose them to be equal.

In the literature one has adopted two different treatments of extrinsic
charm production, which are known as the massive and massless charm de-
scriptions. The former, advocated in [4], treats the charm quark as a heavy
quark (with mass mc) and the cross sections or coefficient functions have
to be described by fixed order perturbation theory. Notice that due to the
work in [5] the perturbation series is now known up to second order and
the NLO massive charm approach agrees with the recent data in [2] and [3].
The latter treatment, which has been rather popular among groups which
fitted parton densities to experimental data, treats the charm quark as a
massless quark so that it can be represented by a parton density fc(x, µ2),
with the boundary condition fc(x, µ2) = 0 for µ ≤ mc. Although at first
sight these approaches are completely different they are actually intimately
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related. It was shown in [6] that the large logarithms of the type ln(Q2/m2
c),

which appear in the perturbation series when Q2 ≫ m2
c , can be resummed

in all orders. The upshot of this procedure is that the charm components of
the deep inelastic structure functions Fi,c(x, Q2, m2

c), where i = 2, L, which
in the first approach are written as convolutions of heavy quark coefficient
functions with light parton densities, become, after resummation, convolu-
tions of light parton coefficient functions with light parton densities which
also include a charm quark density. This procedure leads to the so-called
zero mass variable flavor number scheme (ZM-VFNS) for Fi,c(x, Q2) where
the mass of the charm quark is absorbed into the new four flavor densities.
To implement this scheme one has to be careful to use quantities which are
collinearly finite in the limit mc → 0. From the above considerations it is
clear that the first approach is better when the charm quark pair is produced
near threshold because the mass of the quark is important in this region and
it cannot be neglected. On the other hand far away from threshold, where
also Q2 ≫ m2

c , the large logarithms above dominate the structure functions
so that the second approach should be more appropriate. Both approaches
are characterized by the number of active flavors involved in the description
of the parton densities which are given by three and four respectively. There-
fore one can also speak of three and four flavor number schemes (TFNS and
FFNS respectively). Each scheme has a different gluon density so that the
momentum sum rule is always satisfied.

As most of the experimental data occur in the kinematical regime which
is between the threshold and the region of large Q2 a third approach has been
introduced to describe the charm components of the structure functions. This
is called the variable flavor number scheme (VFNS). A first discussion was
given by Aivasis, Collins, Olness and Tung [7], where a VFNS prescription
called ACOT was given in lowest order only. The ACOT results were com-
pared with the NLO results in [8]. We will give our NLO version of a VFNS
scheme in this paper and we call it the CSN scheme to distinguish it. A dif-
ferent approach, generalized to all orders, was given in the papers by Buza,
Matiounine, Smith and van Neerven [6],[9], which we denote by BMSN. Fi-
nally another version of a VFNS for the charm component of the structure
function was presented by Thorne and Roberts in [10], which will be called
the TR scheme. Note that a proof of factorization to all orders for the total
structure function, which includes charm and light parton production, was
recently given in [11].
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The difference between the various versions can be attributed to two in-
gredients entering the construction of a VFNS. The first one is the mass
factorization procedure carried out before the large logarithms can be re-
summed. The second one is the matching condition imposed on the charm
quark density, which has to vanish in the threshold region of the production
process. It will be one of our goals to elucidate these differences in the next
Section. Another problem, which was not clarified in the papers above is
that the mass factorization cannot be carried out on the level of the charm
components of the structure functions alone, because one also needs contri-
butions coming from the light parton components of the structure functions.
The latter can be attributed to all heavy charm quark loop contributions
to gluon self energies, which appear in the virtual corrections to the light
parton coefficient functions. These corrections have to be combined with
contributions from gluon splitting into heavy charm anti-charm quark pairs,
which belong to the charm components (not the light quark components)
of the structure functions. In this paper we will give a much more careful
analysis than has been done previously in the literature. Another aspect of
any VFNS approach is that one needs two sets of parton densities. One set
only contains densities in a three flavor number scheme whereas the second
one, which also includes a charm quark density, is parametrized in a four
flavor number scheme. Both parameterizations have to satisfy the relations
quoted in [6]. At this moment the latter set is not available in the literature
and we would like to fill in this gap. Starting from a three flavor number set
of parton densities recently published in [12] we will construct a four flavor
number set of densities satisfying the relations in [6].

In Sec.II we give a general discussion of the CSN description for heavy
quark electroproduction, and explain the problems with mass factorization,
collinear singularities and threshold dependence in the heavy flavor compo-
nents of the structure functions. We then specialize to charm quark elec-
troproduction in Sec.III, working to second order in the running coupling
constant αs(µ

2). We first present details about the charm quark density.
Next numerical results are shown for the structure functions in the various
schemes. Analytic results for the contributions from the Compton scattering
reaction with an invariant mass cut are relegated to an Appendix. Finally
we want to emphasize that we only consider inclusive charm quark produc-
tion in this paper. Exclusive charm production which involves transverse
momentum and rapidity distributions will be dealt with in another paper.
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2 Discussion of variable flavor number schemes

In this section we discuss two different representations of the deep inelastic
structure functions in variable flavor number schemes. One is proposed here
(CSN). The other (BMSN) was proposed in [6] and [9]. The former starts
from mass factorization of the exact heavy quark coefficient functions whereas
the latter only applies this procedure to the asymptotic expressions for these
functions. In both schemes the special role of the heavy quark loop contribu-
tions to the light quark coefficient functions in combination with heavy quark
production via gluon splitting was overlooked. This will be repaired in this
paper. Furthermore in both schemes there is a lot of freedom in the choice
of matching conditions, which are needed to connect the structure functions
presented for nf and nf + 1 light flavors. Different matching conditions lead
to different threshold behaviors, which have consequences for the description
of the structure functions at small Q2 and large x.

Limiting ourselves to electroproduction, where deep inelastic lepton-hadron
scattering is only mediated by a photon, the light parton components of the
structure functions are defined by

F LIGHT
i (nf , Q

2, m2) =

nf
∑

k=1

e2
k

[

fS
q (nf , µ

2) ⊗
(

C̃PS
i,q

(

nf ,
Q2

µ2

)

+ C̃VIRT,PS
i,q

(

nf ,
Q2

m2
,
Q2

µ2

)

)

+fS
g (nf , µ

2) ⊗
(

C̃S
i,g

(

nf ,
Q2

µ2

)

+ C̃VIRT,S
i,g

(

nf ,
Q2

m2
,
Q2

µ2

)

)

+fk+k̄(nf , µ
2) ⊗

(

CNS
i,q

(

nf ,
Q2

µ2

)

+ CVIRT,NS
i,q

(

nf ,
Q2

m2
,
Q2

µ2

)

)]

, (2.1)

where ⊗ denotes the convolution symbol in the parton Bjorken scaling vari-
able z. In this expression the Ci,k (i = 2, L; k = q, g) denote the light par-
ton coefficient functions and the ek represent the charges of the light flavor
quarks. The quantities CVIRT

i,k only contain the heavy quark loop contribu-
tions to the light parton coefficient functions. Furthermore fS

g (nf , µ
2) stands

for the gluon density while the singlet (S) and non-singlet (NS) light quark
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densities, with respect to the SU(nf ) flavor group, are defined by

fk+k̄(nf , µ
2) ≡ fk(nf , µ

2) + fk̄(nf , µ
2)

fS
q (nf , µ

2) =
nf
∑

k=1

fk+k̄(nf , µ
2)

fNS
q (nf , µ

2) = fk+k̄(nf , µ
2) − 1

nf
fS

q (nf , µ
2) . (2.2)

Finally we have set the factorization scale equal to the renormalization scale
µ. The light parton coefficient functions have been calculated up to order α2

s

in [13]. The contributions to CVIRT
i,k appear for the first time in second order

perturbation theory and can be found in [14]. For our further discussion it
will be convenient to distinguish between the numbers of external and internal
flavors. The former refers to the number of light flavor densities whereas the
latter denotes the number of light flavors in the quark loop contributions
to the virtual corrections. They are not necessarily equal. Some of the
coefficient functions have the external flavor number as an overall factor. To
explicitly cancel this factor we have defined the quark and gluon coefficient
functions in Eq. (2.1) as follows

CS
i,q(nf ,

Q2

µ2
) = CNS

i,q (nf ,
Q2

µ2
) + CPS

i,q (nf ,
Q2

µ2
) ,

CPS
i,q (nf ,

Q2

µ2
) = nf C̃PS

i,q (nf ,
Q2

µ2
) , CS

i,g(nf ,
Q2

µ2
) = nf C̃S

i,g(nf ,
Q2

µ2
) , (2.3)

where PS represents the purely singlet component. Hence the remaining nf

in the argument of the coefficient functions marked with a tilde denotes the
number of internal flavors. The same holds for the nf in the parton densities.
However the argument nf in the structure functions is external and it refers
to the number of parton densities appearing in their expressions. The parton
densities satisfy the renormalization group equations. If we define

D ≡ µ
∂

∂µ
+ β(nf , g)

∂

∂g
, g ≡ g(nf , µ

2) (2.4)

then

DfNS
q (nf , µ

2) = −γNS
qq (nf , g)fNS

q (nf , µ
2)
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Figure 1: Lowest-order photon-gluon fusion process γ∗ + g → Q + Q̄ con-
tributing to the coefficient functions H

S,(1)
i,g .

DfS
k (nf , µ

2) = −γS
kl(nf , g)fS

l (nf , µ
2) k, l = q, g (2.5)

where γkl represent the anomalous dimensions of the operators in the operator
product expansion (OPE).

The heavy flavor components (Q = c, b, t, Q̄ = c̄, b̄, t̄) of the structure
functions F2 and FL arise from Feynman graphs with heavy flavors (Q and
Q̄ with mass m) in the final state and are given by

FEXACT
i,Q (nf , Q

2, m2) =
nf
∑

k=1

e2
k

[

fS
q (nf , µ

2) ⊗ LPS
i,q

(

nf ,
Q2

m2
,
Q2

µ2

)

+fS
g (nf , µ

2) ⊗ LS
i,g

(

nf ,
Q2

m2
,
Q2

µ2

)

+ fk+k̄(nf , µ
2) ⊗ LNS

i,q

(

nf ,
Q2

m2
,
Q2

µ2

)

]

+e2
Q

[

fS
q (nf , µ

2) ⊗ HPS
i,q

(

nf ,
Q2

m2
,
Q2

µ2

)

+ fS
g (nf , µ

2) ⊗ HS
i,g

(

nf ,
Q2

m2
,
Q2

µ2

)

]

,

(2.6)

where eQ represents the charge of the heavy quark. Furthermore Li,k and Hi,k

(i = 2, L; k = q, g) represent the heavy-quark coefficient functions which are
exactly calculated order by order in perturbation theory. In Figs. 1-5 we have
shown some of the Feynman diagrams contributing to the coefficient functions
up to order α2

s. Like in the case of the light-parton coefficient functions Ci,k

they can be split into (purely)-singlet and non-singlet parts. The distinction
between Li,k and Hi,k can be traced back to the different (virtual) photon-
parton heavy-quark production mechanisms from which they originate. The
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k1

k

Figure 2: Virtual gluon corrections to the process γ∗+g → Q+Q̄ contributing
to the coefficient functions H

S,(2)
i,g .

functions Li,k, Hi,k are attributed to the reactions where the virtual photon
couples to the light quarks and the heavy quark respectively. Hence Li,k

and Hi,k in Eq. (2.6) are multiplied by e2
k and e2

Q respectively. As has
been mentioned in the introduction the heavy quark coefficient functions
contain large logarithms of the type lni(Q2/m2) when Q2 ≫ m2 which can
be removed from the former by using mass factorization. To do this we first
have to split the heavy quark coefficient functions Li,k into soft and hard
parts

Li,k(nf ,
Q2

m2
,
Q2

µ2
) = LHARD

i,k (nf , ∆,
Q2

m2
,
Q2

µ2
) + LSOFT

i,k (nf , ∆,
Q2

m2
,
Q2

µ2
) , (2.7)

where ∆ is a cut on the invariant mass sQQ̄ of the heavy quark pair. The
cut can be determined by experiment. It is chosen such that in the limit
m → 0 all mass singularities reside in the soft parts so that the hard parts
are collinearly finite. Taking Fig. 5 as an example we mean by hard that
one detects a QQ̄-pair with a large invariant mass which is experimentally
observable if sQQ̄ > ∆. In the case sQQ̄ < ∆ the QQ̄-pair is soft and becomes
indistinguishable from other light parton final states which contain contribu-
tions from virtual heavy quark loops. Next we add the soft parts to the other
contributions to F LIGHT

i in Eq. (2.1) and the mass factorization proceeds like

C̃i,k(nf ,
Q2

µ2
) + CVIRT

i,k (nf ,
Q2

m2
,
Q2

µ2
) + LSOFT

i,k (nf , ∆,
Q2

m2
,
Q2

µ2
) =

Alk,Q(nf ,
µ2

m2
) ⊗ C̃i,l(nf ,

Q2

µ2
)
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+Alk(nf ,
µ2

m2
) ⊗ CCSN,SOFT

i,l,Q (nf , ∆,
Q2

m2
,
Q2

µ2
) , k, l = q, g . (2.8)

Here Ci,l,Q are those parts of the light parton coefficient functions Ci,l which
contain the heavy quark loops. The hard parts of Li,k are left in FEXACT

i,Q in
Eq. (2.6) and do not need any mass factorization. Furthermore we have the
condition that the dependence on the parameter ∆ cancels in the sums so

CCSN
i,k,Q

(

nf ,
Q2

m2
,
Q2

µ2

)

= CCSN,SOFT
i,k,Q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

+LHARD
i,k

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

, (2.9)

where µ in the hard parts only represents the renormalization scale. The
coefficient functions Hi,k satisfy the relations 1

Hi,k(nf ,
Q2

m2
,
Q2

µ2
) = Alk(nf ,

µ2

m2
) ⊗ CCSN

i,l (nf ,
Q2

m2
,
Q2

µ2
) k, l = Q, q, g .(2.10)

Notice that mass factorization applied to the functions Hi,q and Hi,g occurring
in FEXACT

i,Q (2.6) leads to the coefficient functions CCSN
i,Q . The latter also follow

from mass factorization of the functions Hi,Q which represent processes with
a heavy quark in the initial state. The quantities Hi,Q, which do not appear in
FEXACT

i,Q , together with the corresponding operator matrix elements (OME’s)
AQQ are characteristic of variable flavor number schemes. The procedure
above transfers the logarithms lni(µ2/m2), appearing in LSOFT

i,k and Hi,k, to
the heavy quark operator matrix elements Alk,Q and AQk. The latter are
defined by (see [6] for details of renormalization and mass factorization)

Alk,Q = 〈k | Ol(0) | k〉 k, l = q, g ,

AQk = 〈k | OQ(0) | k〉 k = Q, q, g . (2.11)

Note that the Ol are the light quark and gluon operators and in Alk,Q we only
retain contributions from subgraphs which contain heavy quark (Q) loops.

1 In order to help the reader, who is more familiar with the notation in [7], one can

make the following comparison. For instance Eq. (7) in the latter reference f
Q(1)
g is equal

to our A
(1)
Qg. Similarly in Eq. (8)

∑

λ ω
λ(1)
Bg = H

(1)
i,g and

∑

λ ω
λ(0)
BQ = H

(0)
i,Q.



10

Figure 3: The bremsstrahlung process γ∗ + g → Q + Q̄ + g contributing to
the coefficient functions H

S,(2)
i,g .

The quantity OQ represents the heavy quark operator. Here we want to stress
that the operators are sandwiched between quark and gluon states. This will
cause mass singularities of the type lni(µ2/m2) to appear in a similar way as
they appear in partonic cross sections.

The heavy quark coefficient functions defined in the CSN scheme in Eqs.
(2.8)-(2.10) are collinearly finite and tend asymptotically to the massless
parton coefficient functions presented in Eq. (2.1) i.e.

lim
Q2→∞

CCSN
i,k (nf ,

Q2

m2
,
Q2

µ2
) = Ci,k(nf ,

Q2

µ2
) , k = Q, q, g . (2.12)

In particular we have

Ci,k(nf ,
Q2

µ2
) + lim

Q2≫m2
CCSN

i,k,Q(nf ,
Q2

m2
,

µ2

m2
) = Ci,k(nf + 1,

Q2

µ2
) , (2.13)

so that the number of internal flavors is enhanced by one unit.
The CSN scheme above has similarities with the VFNS schemes proposed

in [7], [10]. The decomposition of the Li,k into soft and hard parts has not
been discussed previously. However one must address this issue because the
mass singularities in Li,k and CVIRT

i,k separately have such high powers in
ln(Q2/m2) that they cannot be removed via mass factorization. Another
feature is that in the limit m → 0 the final state invariant energies in the
reactions which contribute to these two types of coefficient functions become
equal. Hence Li,k and CVIRT

i,k have to be added so that the leading singular-
ities cancel and the remaining ones are then removed by mass factorization
according to Eq. (2.8). Notice that the the total coefficient functions Li,k
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cannot be moved to F LIGHT
i because this would contradict the definitions of

the latter structure functions where only light partons are observed in the fi-
nal states. Therefore it is sufficient to transfer the LSOFT

i,k to the F LIGHT
i since

they contain the same mass singularities as the Li,k. If ∆ is chosen small
enough, the heavy quarks are unobservable in a measurement of F LIGHT

i .
Note that the problem of the separation of Li,k into soft and hard parts is
not needed for the total structure function F LIGHT

i + FEXACT
i,Q . The all order

mass factorization of the latter is shown in [11].
To illustrate the procedure above we carry it out up to order α2

s. The
coefficients in the series expansion are defined as follows

Ci,k =
∞
∑

n=0

an
sC

(n)
i,k , Hi,k =

∞
∑

n=0

an
s H

(n)
i,k , Li,k =

∞
∑

n=2

an
s L

(n)
i,k ,

Akl =
∞
∑

n=0

an
s A

(n)
kl , with as ≡

αs

4π
. (2.14)

Up to second order the mass factorization relations become

CVIRT,NS,(2)
i,q (

Q2

m2
) + L

SOFT,NS,(2)
i,q

(

∆,
Q2

m2
,
Q2

µ2

)

= A
NS,(2)
qq,Q

( µ2

m2

)

CNS,(0)
i,q

−β0,Q ln

(

µ2

m2

)

CNS,(1)
i,q

(Q2

µ2

)

+ CCSN,SOFT,NS,(2)
i,q,Q

(

∆,
Q2

m2
,
Q2

µ2

)

, (2.15)

with

CVIRT,NS,(2)
i,q (

Q2

m2
) = F (2)(

Q2

m2
) C(0)

i,q . (2.16)

Here F (2)(Q2/m2) denotes the two-loop vertex correction in Fig. 6. This
function satisfies the decoupling theorem which implies that it vanishes in
the limit m → ∞. The heavy quark coefficient functions L

NS,(2)
i,k have been

calculated in [15] and, after their convolution with the partonic densities,
yield contributions to the structure functions which behave asymptotically
like ln3(Q2/m2). These logarithms are canceled after adding F (2)(Q2/m2)

in Ref. [14] to L
NS,SOFT,(2)
i,k which contains the same mass singularities as

L
NS,(2)
i,k (see the remark below Eq. (2.7)). To obtain the hard and soft parts
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Figure 4: Bethe-Heitler process γ∗ + q(q̄) → Q + Q̄ + q(q̄) contributing to

the coefficient functions H
PS,(2)
i,q . The light quarks q and the heavy quarks Q

are indicated by dashed and solid lines respectively.

we divide the integral over sQQ̄ in the graphs of Fig. 5 in two regions i.e.
s > sQQ̄ > ∆ and ∆ > sQQ̄ > 4 m2 which we denote by HARD and SOFT
respectively. Here sQQ̄ and s denote the CM energies squared of the QQ̄
system and the incoming photon-parton state respectively. The hard and
soft parts are presented in the Appendix. Finally β0,Q = −2/3 denotes the
heavy quark contribution to the lowest order coefficient of the β-function in
Eq. (2.4). We must change the running coupling constant when we change
schemes.

The mass factorization of the heavy quark coefficient functions Hi,k is
simpler. Here we get

H
PS,(2)
i,q

(Q2

m2
,
Q2

µ2

)

= A
PS,(2)
Qq

( µ2

m2

)

CCSN,NS,(0)
i,Q

(Q2

m2

)

+ CCSN,PS,(2)
i,q

(Q2

m2
,
Q2

µ2

)

,

(2.17)

H
NS,(1)
i,Q

(Q2

m2

)

= A
NS,(1)
QQ

( µ2

m2

)

CCSN,NS,(0)
i,Q

(Q2

m2

)

+ CCSN,NS,(1)
i,Q

(Q2

m2
,
Q2

µ2

)

,

(2.18)

H
S,(1)
i,g

(Q2

m2

)

= A
S,(1)
Qg

( µ2

m2

)

CCSN,NS,(0)
i,Q

(Q2

m2

)

+ CCSN,S,(1)
i,g

(Q2

m2
,
Q2

µ2

)

,

(2.19)
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p2

p1p

p′

q

p2

p1p

p′

q

Figure 5: Compton process γ∗(q)+q(p) → Q(p1)+Q̄(p2)+q(p′) contributing

to the coefficient functions L
NS,(2)
i,q . The light quarks q and the heavy quarks

Q are indicated by dashed and solid lines respectively (s = (p + q)2, sQQ̄ =
(p1 + p2)

2 see text).

H
S,(2)
i,g

(Q2

m2
,
Q2

µ2

)

= A
S,(2)
Qg

( µ2

m2

)

CCSN,NS,(0)
i,Q

(Q2

m2

)

+ CCSN,S,(2)
i,g

(Q2

m2
,
Q2

µ2

)

+A
S,(1)
Qg

( µ2

m2

)

⊗ CCSN,NS,(1)
i,Q

(Q2

m2
,
Q2

µ2

)

. (2.20)

In the expressions above we have only given the arguments on which the
coefficient functions and operator matrix elements depend, like nf , Q2/m2,
or Q2/µ2 (at least up to that order in perturbation theory). Furthermore
we have dropped the convolution symbol when the corresponding coefficient
function behaves as a δ-function of the type δ(1 − z). The heavy quark
coefficient functions correspond to the following processes

H
S,(1)
i,g : γ∗ + g → Q + Q̄ Fig. 1

H
S,(2)
i,g : γ∗ + g → Q + Q̄ + g Figs. 2, 3

H
PS,(2)
i,q : γ∗ + q(q̄) → Q + Q̄ + q(q̄) Fig. 4

L
NS,(2)
i,q : γ∗ + q(q̄) → Q + Q̄ + q(q̄) Fig. 5

H
NS,(0)
i,Q : γ∗ + Q → Q
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γ∗

q

Q

Q̄

Figure 6: Two-loop vertex correction to the process γ∗ + q → q con-
taining a heavy quark (Q) loop. It contributes to CVIRT,NS,(2)

i,q (Q2/m2) =

F (2)(Q2/m2) C(0)
i,q .

H
NS,(1)
i,Q : γ∗ + Q → Q + g Fig. 7 . (2.21)

In the reactions above the virtual corrections to the lowest order processes are
implicitly understood. The coefficient functions L

NS,(2)
i,q , H

PS,(2)
i,q and H

S,(2)
i,g ,

computed in the MS-scheme, can be found in [5] whereas the H
NS,(1)
i,Q are

computed in the context of QED in [16]. The MS-scheme is also chosen
for the OME’s in Eqs. (2.15)-(2.20) which are computed up to order α2

s in

[6] and [15]. This also holds for A
NS,(1)
QQ in Eq. (2.18) which is presented

in the context of QED in [17]. Furthermore the running coupling constant
appearing in the quantities above contains nf active flavors.

The mass singular logarithms of the type ln(µ2/m2), appearing in the
OME’s above, are absorbed by the light parton densities. This procedure
leads to parton densities which are represented in the nf + 1 light flavor
scheme. For the light parton densities one obtains

fk+k̄(nf + 1, µ2) = ANS
qq,Q

(

nf ,
µ2

m2

)

⊗ fk+k̄(nf , µ
2) + ÃPS

qq,Q

(

nf ,
µ2

m2

)

⊗fS
q (nf , µ

2) + ÃS
qg,Q

(

nf ,
µ2

m2

)

⊗ fS
g (nf , µ

2) , k = 1 · · ·nf . (2.22)

The parton density representing the heavy quark in the nf +1 flavor scheme
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is

fQ+Q̄(nf + 1, µ2) = ÃPS
Qq

(

nf ,
µ2

m2

)

⊗ fS
q (nf , µ

2)

+ÃS
Qg

(

nf ,
µ2

m2

)

⊗ fS
g (nf , µ

2) . (2.23)

Finally the gluon density in the nf + 1 flavor scheme is

fS
g (nf + 1, µ2) = AS

gq,Q(nf ,
µ2

m2
) ⊗ fS

q (nf , µ
2)

+AS
gg,Q(nf ,

µ2

m2
) ⊗ fS

g (nf , µ
2) . (2.24)

One can check (see [6] ) that the new parton densities satisfy the renormal-
ization group equations in Eq. (2.5) wherein all quantities nf are replaced
by nf + 1. Up to order a2

s the above relations become

fk+k̄(nf + 1, µ2) = fk+k̄(nf , µ
2)

+a2
s(nf , µ

2)A
NS,(2)
qq,Q

( µ2

m2

)

⊗ fk+k̄(nf , µ
2) , (2.25)

fQ+Q̄(nf + 1, µ2) = as(nf , µ
2)Ã

S,(1)
Qg

( µ2

m2

)

⊗ fS
g (nf , µ

2)

+a2
s(nf , µ

2)
[

Ã
PS,(2)
Qq

( µ2

m2

)

⊗ fS
q (nf , µ

2) + Ã
S,(2)
Qg

( µ2

m2

)

⊗ fS
g (nf , µ

2)
]

,

(2.26)

fS
g (nf + 1, µ2) = fS

g (nf , µ
2) + as(nf , µ

2)A
S,(1)
gg,Q(

µ2

m2
) ⊗ fS

g (nf , µ
2)

+a2
s(nf , µ

2)
[

A
S,(2)
gq,Q(

µ2

m2
) ⊗ fS

q (nf , µ
2) + A

S,(2)
gg,Q(

µ2

m2
) ⊗ fS

g (nf , µ
2)
]

.

(2.27)



16

Figure 7: Order αs corrections to the process γ∗ + Q → Q and the reaction
γ∗ + Q → Q + g contributing to the coefficient functions H

NS,(1)
i,Q .

Notice that in passing from an nf -flavor to an nf+1-flavor scheme the running
coupling constant becomes

as(nf + 1, µ2) = as(nf , µ
2)
[

1 − as(nf , µ
2)β0,Q ln(

µ2

m2
)
]

, (2.28)

which has to be used in all expressions for the structure functions in the
CSN scheme. Using the mass factorization relations in Eqs. (2.8), (2.10) and
the redefinitions of the parton densities in Eqs. (2.22)-(2.24) we obtain from
Eq. (2.6) the heavy quark components of the structure functions in the CSN
scheme are

FCSN
i,Q (nf + 1, ∆, Q2, m2) =

e2
Q

[

fQ+Q̄(nf + 1, µ2) ⊗
{

CCSN,NS
i,Q

(

nf + 1,
Q2

m2
,
Q2

µ2

)

+CCSN,PS
i,Q

(

nf + 1,
Q2

m2
,
Q2

µ2

)

}

+
nf
∑

l=1

fl+l̄(nf + 1, µ2) ⊗ CCSN,PS
i,q

(

nf + 1,
Q2

m2
,
Q2

µ2

)

+fS
g (nf + 1, µ2) ⊗ CCSN,S

i,g

(

nf + 1,
Q2

m2
,
Q2

µ2

)

]

+
nf
∑

k=1

e2
k

[ nf
∑

l=1

fl+l̄(nf + 1, µ2) ⊗ LHARD,PS
i,q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)
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+fS
g (nf + 1, µ2) ⊗ LHARD,S

i,g

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

+fk+k̄(nf + 1, µ2) ⊗ LHARD,NS
i,q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

]

. (2.29)

In a similar way one obtains from Eq. (2.1) the light parton components of
the structure functions in the CSN scheme are

FCSN,LIGHT
i (nf , ∆, Q2, m2) =

nf
∑

k=1

e2
k

[

nf
∑

l=1

fl+l̄(nf + 1, µ2) ⊗
(

C̃PS
i,q

(

nf ,
Q2

µ2

)

+ CCSN,SOFT,PS
i,q,Q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

)

+fS
g (nf + 1, µ2) ⊗

(

C̃S
i,g

(

nf ,
Q2

µ2

)

+ CCSN,SOFT,S
i,g,Q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

)

+fk+k̄(nf + 1, µ2) ⊗
(

CNS
i,q

(

nf ,
Q2

µ2

)

+ CCSN,SOFT,NS
i,q,Q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

)]

.

(2.30)

Up to a given order Eqs. (2.29) and (2.30) do not differ from the structure
functions presented in Eqs. (2.6) and (2.1) respectively as long as one uses
fixed order perturbation theory. This can be checked up to second order
when the coefficient functions in Eqs. (2.29) and (2.30) are substituted using
the mass factorization relations in (2.15)-(2.20). The difference arises if the
logarithms of the type lni(µ2/m2), which show up in the parton densities, are
resummed using the renormalization group equations in Eq. (2.5). This re-
summation induces corrections beyond fixed order perturbation theory which
become noticeable for µ2 ≫ m2. On the other hand we do not want that
the resummation bedevils the threshold behavior of the structure functions.
In this region the best representation is still given by Eqs. (2.1) and (2.6).
Therefore one has to look for a scale at which expressions (2.29) and (2.30)
coincide with those given by fixed order perturbation theory in (2.6) and
(2.1) respectively. Finding this scale is the most important issue in CSN
as we will show below. Both expressions FCSN

i,Q and FCSN,LIGHT
i are renor-

malization group invariants. Hence they satisfy the renormalization group
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equations (see Eq. (2.4) )

D FCSN
i,Q = 0 , D FCSN,LIGHT

i = 0 . (2.31)

The same holds for the total structure function in the variable flavor number
scheme which is defined as

FCSN
i (nf + 1, Q2, m2) = FCSN,LIGHT

i (nf , ∆, Q2, m2)

+FCSN
i,Q (nf + 1, ∆, Q2, m2) . (2.32)

One can now show that for large Q2, FCSN
i (nf +1, Q2, m2) turns into the same

expression as Eq. (2.1) where nf in the light parton coefficient functions Ci,k

is replaced by nf + 1 and CVIRT
i,k = 0 for the nf + 1 heavy flavor piece.

After having discussed the general procedure to construct CSN scheme
structure functions we now turn to the practical issues. For asymptotic values
of Q2, far above the heavy QQ̄ threshold at (1−x)Q2/x = 4m2, all coefficient
functions CCSN

i,k in Eq. (2.29) can be replaced by the light parton coefficient
functions so that, after having removed LHARD

i,k , one gets the heavy quark
components of the structure functions in the so-called zero mass variable
flavor number scheme (ZM-CSN). However near threshold at low Q2 and
large x there is a problem, which has not been solved satisfactorily in the
literature. In this region one would like the FCSN

i,Q to vanish in the same way
that the FEXACT

i,Q vanish. Unfortunately the coefficient functions CCSN
i,Q do not

vanish in the threshold region due to the presence of the OME’s AS
Qk and

the functions HNS
i,Q which describe processes with ONE heavy quark in the

final state (see Eq. (2.21) ) contrary to Hi,g and Hi,q which originate from
reactions with at least TWO heavy quarks (Q and Q̄) in the final state. Only
the latter functions have the correct threshold behavior. In the literature two
ways have been proposed to obtain reasonable threshold behaviors. The first
one was given in a paper by Aivasis, Collins, Olness and Tung [7], which will
be denoted as the ACOT boundary conditions. The second one was proposed
in a paper by Thorne and Roberts [10], which we shall call the TR boundary
conditions. In both approaches the structure functions have the properties

Fi,Q(Q2, m2) = FEXACT
i,Q (nf , Q

2, m2) for Q2 < m2 ,

Fi,Q(Q2, m2) = FCSN
i,Q (nf + 1, Q2, m2) for Q2 ≥ m2 , (2.33)
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where the parton densities satisfy the boundary conditions at µ2 = m2

fk+k̄(nf + 1, x, µ2) = fk+k̄(nf , x, µ2) ,

fQ+Q̄(nf + 1, x, µ2) = 0 2 ,

fg(nf + 1, x, µ2) = fg(nf , x, µ2) . (2.34)

Notice that there is no relation between the scale µ, chosen in these bound-
ary conditions, and the production threshold of heavy quarks (1−x) Q2/x ≥
4 m2. If one e.g. takes µ2 = Q2 and Q2 ≤ m2 all terms in Eq. (2.29), where
the heavy quark density is multiplied with CCSN

i,Q , vanish in spite of the fact
that heavy flavors are still produced as long as x < Q2/(Q2 + 4 m2). On the
other hand it is possible that Q2 > m2 and x ≥ Q2/(Q2+4 m2) which implies
a non-vanishing heavy quark density with no heavy quark pair production.
Therefore the value for Q2 chosen in Eq. (2.33) is a little arbitrary and no
condition is imposed on x. Since we do not have any alternative we shall
choose the same value of Q2 as in Eq. (2.33) above which FEXACT

i,Q turns into
FCSN

i,Q . Another problem is is that the boundary conditions in Eq. (2.34) do
not agree with the relations in Eqs. (2.22)-(2.24) if the computations are
extended beyond order a2

s which happens in the MS-scheme. In this case
the continuity at µ2 = m2 is changed into a discontinuity. Finally there is
a problem with the heavy quark density if we choose an arbitrary value for
µ2 in fQ+Q̄(nf + 1, x, µ2). In deep inelastic scattering one very often chooses
µ2 = Q2. If Q2 < m2 one has to know fQ+Q̄(nf +1, x, µ2) for values µ2 < m2

which are not specified in Eq. (2.34). Furthermore the OME’s do not vanish
for µ2 < m2 so that CCSN

i,k 6= Hi,k. (see Eqs. (2.17)-(2.20)). Hence in Eq.
(2.33) Fi,Q 6= FEXACT

i,Q for Q2 < m2 so that the threshold behavior will be
spoiled. Therefore one has to avoid chosing µ2 < m2 which can be achieved
by the prescription given by ACOT in [7]

µ2 = m2 + kQ2

(

1 − m2

Q2

)n

for Q2 > m2 ,

µ2 = m2 for Q2 ≤ m2 , (2.35)

1Note that in the existing parton density sets fQ+Q̄(nf + 1, x, µ2) also vanishes for

µ2 < m2.
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with k = 1/2 and n = 2. In this way one gets CCSN
i,k = Hi,k for Q2 < m2

at least up to order as. For higher orders one has to use the relations in
Eqs. (2.22)-(2.24) instead of those given in Eq. (2.34) as the latter only hold
up to order as. The new conditions are presented up to order a2

s in Eqs.
(2.25)-(2.27).

In the TR prescription one first chooses µ2 = Q2 and then requires

FCSN
i (nf + 1, Q2, m2) |Q2=m2 = FEXACT

i (nf , Q
2, m2) |Q2=m2 ,

d FCSN
i (nf + 1, Q2, m2)

d ln(Q2/m2)
|Q2=m2 =

d FEXACT
i (nf , Q

2, m2)

d ln(Q2/m2)
|Q2=m2 .

(2.36)

Using the mass factorization relations in Eqs. (2.17)-(2.20) the TR boundary
conditions lead to new heavy quark coefficient functions CCSN

i,Q which have
nothing to do with the reactions in Eq. (2.21). For instance the lowest order
coefficient functions in the TR prescription corresponding to the reaction γ∗+
Q → Q in Eq. (2.21) vanish at the QQ̄ threshold although this process only
contains one heavy quark in the final state. Moreover, as already admitted
by the authors in [10], this procedure breaks down beyond order as because
there are more coefficient functions than relations between them. Another
problem is that it is unclear in which subtraction scheme one is working
since the subtraction terms in [10] have nothing to do with the usual OME’s
except in the limit Q2 ≫ m2. For example in order as the subtraction term
needed for H

NS,(1)
i,Q in Eq. (2.18) is not given by A

NS,(1)
QQ . The same holds for

H
S,(1)
i,g in Eq. (2.19), which gets another subtraction than given by A

S,(1)
Qg .

From the theoretical viewpoint the boundary conditions in Eq. (2.36) seem
very unattractive to us because the relations between the coefficient functions
CCSN

i,k (k = Q, q, g) and the actual parton reactions are broken and the scheme
is unknown. Notice that the parton densities in [10] are still presented in the
MS-scheme.

A different VFNS from that discussed above has been proposed by Buza,
Matiounine, Smith and van Neerven in [6], [9], which we call the BMSN
scheme. In the latter it was advocated that only when the large logarithms
dominate the heavy quark coefficient functions do they have to be removed
via mass factorization so that they can be resummed via the renormalization
group equations. In the BMSN scheme we need the asymptotic heavy quark
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coefficient functions defined by

lim
Q2≫m2

Hi,k(nf ,
Q2

m2
,
Q2

µ2
) = HASYMP

i,k (nf ,
Q2

m2
,
Q2

µ2
) , (2.37)

which behave like

HASYMP,(l)(nf ,
Q2

m2
,
Q2

µ2
) ∼ al

s

∑

n+j≤l

anj lnn
(Q2

m2

)

lnj
(Q2

µ2

)

, (2.38)

with a similar behavior for LASYMP
i,k . In the BMSN scheme FEXACT

i,Q is given by
Eq. (2.6) except that Li,k → LHARD

i,k analogous to the CSN. The asymptotic
heavy quark structure functions, denoted by FASYMP

i,Q , are given by the same
expressions as presented for FEXACT

i,Q where now all exact heavy quark func-
tions are replaced by their asymptotic ones. Up to second order the latter
can be found in [15]. The functions L

SOFT,ASYMP,NS,(2)
i,q and L

HARD,ASYMP,NS,(2)
i,q

are given in Appendix A. In the BMSN scheme the charm components of the
structure functions are defined as

FBMSN
i,Q (nf + 1, ∆, Q2, m2) = FEXACT

i,Q (nf , ∆, Q2, m2)

−FASYMP
i,Q (nf , ∆, Q2, m2) + FPDF

i,Q (nf + 1, ∆, Q2, m2) , (2.39)

with

FPDF
i,Q (nf + 1, ∆, Q2, m2) =

e2
Q

[

fS
q (nf + 1, µ2) ⊗ C̃PS

i,q

(

nf + 1,
Q2

µ2

)

+ fS
g (nf + 1, µ2)

⊗C̃S
i,g

(

nf + 1,
Q2

µ2

)

+ fQ+Q̄(nf + 1, µ2) ⊗ CNS
i,q

(

nf + 1,
Q2

µ2

)

]

+
nf
∑

k=1

e2
k

[ nf
∑

l=1

fl+l̄(nf + 1, µ2) ⊗ LHARD,ASYMP,PS
i,q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

+fS
g (nf + 1, µ2) ⊗ LHARD,ASYMP,S

i,g

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

+fk+k̄(nf + 1, µ2) ⊗ LHARD,ASYMP,NS
i,q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

]

. (2.40)
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The structure functions FPDF
i,Q are obtained from the FASYMP

i,Q via the mass
factorization relations in Eqs. (2.7), (2.10) by making the replacements
Hi,k → HASYMP

i,k , Li,k → LASYMP
i,k and CCSN

i,k → C̃i,k on the left and right-
hand sides respectively. Furthermore we have used the definitions for the
parton densities in Eqs. (2.22)- (2.24). Notice that if the coefficient func-
tions, indicated by LHARD,ASYMP

i,k , are removed from FPDF
i,Q one obtains the

structure functions in the ZM-CSN. The light parton components of the
structure functions become

FBMSN,LIGHT
i (nf , ∆, Q2, m2) =

nf
∑

k=1

e2
k

[ nf
∑

l=1

fl+l̄(nf + 1, µ2) ⊗ δ CPS
i,q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

+fS
g (nf + 1, µ2) ⊗ δ CS

i,g

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

+fk+k̄(nf + 1, µ2) ⊗ δ CNS
i,q

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

]

, (2.41)

with

δ Ci,k

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

= C̃i,k

(

nf + 1,
Q2

µ2

)

+ C̃VIRT
i,k

(

nf ,
Q2

m2
,
Q2

µ2

)

+LSOFT
i,k

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

− C̃VIRT,ASYMP
i,k

(

nf ,
Q2

m2
,
Q2

µ2

)

−LASYMP
i,k

(

nf ,
Q2

m2
,
Q2

µ2

)

. (2.42)

The coefficient functions above satisfy the property that

lim
Q2≫m2

δ Ci,k

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

=

C̃i,k

(

nf + 1,
Q2

µ2

)

− LHARD,ASYMP
i,k

(

nf , ∆,
Q2

m2
,
Q2

µ2

)

. (2.43)
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Using the relations in Eqs. (2.9), (2.12) one can make a comparison between
the CSN and the BMSN schemes. In the asymptotic limit the heavy quark
components satisfy (see Eqs. (2.29), (2.39), (2.40))

lim
Q2≫m2

FBMSN
i,Q (nf + 1, ∆, Q2, m2) = lim

Q2≫m2
FCSN

i,Q (nf + 1, ∆, Q2, m2)

= lim
Q2≫m2

FPDF
i,Q (nf + 1, ∆, Q2, m2) , (2.44)

and the light parton components satisfy (see Eqs. (2.30), (2.41))

lim
Q2≫m2

FBMSN,LIGHT
i (nf , ∆, Q2, m2) = lim

Q2≫m2
FCSN,LIGHT

i (nf , ∆, Q2, m2) ,

(2.45)

provided we impose the same boundary conditions on both schemes. From
the discussion above we infer that the only difference between the CSN and
the BMSN schemes can be attributed to the m2/Q2-terms which are present
in CCSN

i,Q . Such terms do not occur in the Ci,q appearing in FPDF
i,Q if one chooses

the BMSN-scheme. In the next Section we will make a study where in Q2

these differences are noticeable.
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3 Comparison between the CSN and the BMSN

scheme

In this Section we will make a comparison in the case of charm production
between the above CSN scheme and the BMSN scheme proposed in [6], [9].
For that purpose we construct a parton density set with four active flavors
from an existing three flavor set in the literature following Eqs. (2.22)-(2.24).
The charm quark density of our set will be compared with those in other
sets with four active flavors presented in [18] (MRST98, central gluon) and
[19] (CTEQ5HQ). Using our set we will study the differences between the
charm components of the structure functions FCSN

i,c (nf +1) in Eq. (2.29) and
FBMSN

i,c (nf + 1) in Eq. (2.39) in particular in the threshold region.

Since all coefficient functions are computed in the MS-scheme we choose
the leading order (LO) and next-to-leading order (NLO) parton density sets
presented in [12] which contain three active flavors only (i.e. u,d,s). This
implies that one has chosen nf = 3 for the anomalous dimensions. In order
to make this paper self contained we give some details here. In LO where the
input scale µ0 is chosen to be µ2

0 = µ2
LO = 0.26 (GeV/c)2 the input parton

densities are

xuv(3, x, µ2
LO) = 1.239 x0.48 (1 − x)2.72 (1 − 1.8

√
x + 9.5x)

xdv(3, x, µ2
LO) = 0.614 (1 − x)0.9 xuv(3, x, µ2

LO)

x∆(3, x, µ2
LO) = 0.23 x0.48 (1 − x)11.3 (1 − 12.0

√
x + 50.9x)

x(ū + d̄)(3, x, µ2
LO) = 1.52 x0.15 (1 − x)9.1 (1 − 3.6

√
x + 7.8x)

xg(3, x, µ2
LO) = 17.47 x1.6 (1 − x)3.8

xs(3, x, µ2
LO) = xs̄(x, µ2

LO) = 0 (3.1)

In NLO where the input scale equals µ2
NLO = 0.40 (GeV/c)2 we have

xuv(3, x, µ2
NLO) = 0.632 x0.43 (1 − x)3.09 (1 + 18.2x)

xdv(3, x, µ2
NLO) = 0.624 (1 − x)1.0 xuv(3, x, µ2

NLO)

x∆(3, x, µ2
NLO) = 0.20 x0.43 (1 − x)12.4 (1 − 13.3

√
x + 60.0x)

x(ū + d̄)(3, x, µ2
NLO) = 1.24 x0.20 (1 − x)8.5 (1 − 2.3

√
x + 5.7x)

xg(3, x, µ2
NLO) = 20.80 x1.6 (1 − x)4.1

xs(3, x, µ2
NLO) = xs̄(x, µ2

NLO) = 0. (3.2)
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where ∆ ≡ d̄ − ū. Furthermore in [12] the heavy quark masses are mc =
1.4 GeV/c2, mb = 4.5 GeV/c. In both sets the densities are evolved from
a very low starting scale, where it is necessary to use the exact numerical
solution for the running coupling constant αs(µ

2). The latter follows from
the implicit equation

ln
Q2

ΛMS
nf

=
4π

β0αs(µ2)
− β1

β2
0

ln

[

4π

β0αs(µ2)
+

β1

β2
0

]

,

β0 = 11 − 2

3
nf , β1 = 102 − 38

3
nf , (3.3)

and will be used in all the following formulae. Furthermore we adopt the
values ΛMS

3,4,5,6 = 299.4, 246, 167.7, 67.8 MeV which yield αs(5, M
2
Z) = 0.114.

Notice that the values for Λnf
follow from the matching conditions

αs(nf , Λnf
, m2) = αs(nf + 1, Λnf+1, m

2) . (3.4)

where for nf = 3 and nf = 4 one has to choose m = mc and m = mb

respectively. For the computation of FEXACT
i,c (2.6) and FASYMP

i,c ((2.39) we
take nf = 3 for the parton densities and the running coupling constant in
Eq. (3.3). However for FCSN

i,c (2.29), FBMSN
i,c (2.39) and FPDF

i,c (2.40) we
need nf = 4 for the coupling constant in Eq. (3.3) and a parton density
set with four active flavors (i.e. u,d,s,c) when the scale µ becomes larger
or equal to the heavy flavor mass m. For reasons which will be explained
below our computations are performed with parton densities represented in
LO, NLO and NNLO (next-to-next-to leading order). The LO densities
are convoluted with the order α2

s contributions to the coefficient functions.
The NLO densities are convoluted with the order αs parts of the coefficient
functions. The zeroth order contributions to the latter have to be multiplied
with the NNLO densities. Notice that for nf = 3 we only need LO and
NLO densities here since the heavy quark coefficient functions in FEXACT

i,c

and FASYMP
i,c start in order αs. Our sets with four active flavors are derived

from the ones with three active flavors by putting nf = 3 in Eqs. (2.25)-
(2.27) starting at a specific scale which we choose as µ2 = m2. Hence it
follows that in LO or in zeroth order αs one gets

fLO
k+k̄(4, x, m2) = fLO

k+k̄(3, x, m2) ,
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fLO
c+c̄(4, x, m2) = 0 ,

fS,LO
g (4, x, m2) = fS,LO

g (3, x, m2) , (3.5)

whereas in NLO or in first order αs one obtains

fNLO
k+k̄ (4, x, m2) = fNLO

k+k̄ (3, x, m2) ,

fNLO
c+c̄ (4, x, m2) = 0 ,

fS,NLO
g (4, x, m2) = fS,NLO

g (3, x, m2) . (3.6)

Since the two-loop OME’s A
(2)
Qk, A

(2)
kl,Q in Eqs. (2.25)-(2.27) do not vanish at

µ2 = m2 in the MS-scheme we find that in NNLO or in order α2
s the parton

densities are discontinuous at µ2 = m2 while going from three to four flavors
i.e.

fNNLO
k+k̄ (4, x, m2) 6= fNNLO

k+k̄ (3, x, m2) ,

fNNLO
c+c̄ (4, x, m2) 6= 0 ,

fS,NNLO
g (4, x, m2) 6= fS,NNLO

g (3, x, m2) . (3.7)

Note that if we would drop the terms independent of lnµ2/m2 in the two-
loop operator matrix elements the inequalities in Eq. (3.7) would become
equalities. Above µ = mc all four flavor number densities evolve with nf = 4
(we have not yet included a bottom quark density above µ = mb). The evolu-
tion of the parton densities, given by the renormalization group equations in
Eq. (2.5), is determined by the anomalous dimensions γ

(0)
ij (LO), γ

(1)
ij (NLO)

and γ
(2)
ij (NNLO). Unfortunately the three-loop anomalous dimensions γ

(2)
ij

are not known yet except for the moments N = 2, 4, 6, 8 (see [20]). However
an analysis of the light parton structure function in Eq. (2.1) [21] reveals

that the contribution from γ
(2)
ij is less important numerically than the con-

tribution due to the two-loop coefficient functions computed in [13]. Hence
our ignorance about the three-loop anomalous dimension will not apprecia-
bly alter our results. Therefore our NNLO analysis is only determined by
the boundary conditions in Eq. (3.7) which only affects the charm density
appearing in FCSN

i,c , FBMSN
i,c and FPDF

i,c . The evolution of the parton densities
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above µ2 = m2
c , presented in [22], was performed using a computer program

which implements the direct x-space method (similar to that of [23]). The
code is written in C++ and has the options to evolve densities in LO and
NLO whereas the NNLO option presently only uses the NLO anomalous di-
mensions. We have checked that the evolution of the parton densities is in
agreement with the results in [24].

Before substituting the parton densities into the structure functions we
encounter a problem caused by the inequalities in Eq. (3.7). This happens in
the threshold region which, according to the ACOT boundary conditions in
Eq. (2.35), is defined by Q2 < m2. In this region one has to choose µ2 = m2

so that FCSN
i,c (nf = 4) and FBMSN

i,c (nf = 4) are equal to FEXACT
i,c (nf = 3).

Notice that the latter has to be understood in the sense mentioned below
Eq. (2.38) where Li,k → LHARD

i,k . However since αs(m
2) is rather large

we have to truncate the perturbation series for the structure functions to
the desired order otherwise the threshold behavior of all the FCSN

i,c (nf = 4)
and FBMSN

i,c (nf = 4) will be destroyed. Let us explain this for the BMSN
scheme in Eq. (2.39). The arguments for the CSN scheme proceed in an
analogous way. The conditions that the FBMSN

i,c (nf = 4) = FEXACT
i,c (nf = 3)

for µ2 = m2 implies that the FASYMP
i,c (nf = 3) in Eq. (2.39) are canceled by

the FPDF
i,c (nf = 4). Further we have to bear in mind that the FEXACT

i,c (nf = 3)
and FASYMP

i,c (nf = 3) are determined by the parton densities in the three
flavor number scheme whereas the FPDF

i,c (nf = 4) are constructed out of the
four flavor number scheme parton densities. The latter have the form

fk(4, x, m2)NNLO = fk(3, x, m2)NNLO[1 + O(α2
s)]

fS
g (4, x, m2)NNLO = fS

g (3, x, m2)NNLO[1 + O(α2
s)]

c(4, x, m2)NNLO = fS
g (3, x, m2)NNLOO(α2

s) + fS
q (3, x, m2)NNLOO(α2

s) .

(3.8)

If these densities are substituted in FPDF
i,c (nf = 4) in Eq. (2.40) one obtains

additional terms of order α3
s and α4

s in the perturbation series which are not
canceled by FASYMP

i,c (nf = 3). Notice that the latter are only computed up
to order α2

s. This effect is caused by multiplying the four flavor number
densities with the coefficient functions Ci,k corrected beyond zeroth order in
αs. To avoid these higher order terms we propose the following formulae for
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the structure functions in the CSN scheme

FCSN
i,Q (nf + 1, ∆, Q2, m2) = e2

Q

[

fNNLO
Q+Q̄ (nf + 1, µ2)CCSN,NS,(0)

i,Q (
Q2

m2
)

+as(nf + 1, µ2)

{

fNLO
Q+Q̄(nf + 1, µ2) ⊗ CCSN,NS,(1)

i,Q

(Q2

m2
,
Q2

µ2

)

+fS,NLO
g (nf + 1, µ2) ⊗ CCSN,S,(1)

i,g

(Q2

m2
,
Q2

µ2

)

}

+a2
s(nf + 1, µ2)

{

fLO
Q+Q̄(nf + 1, µ2) ⊗

(

CCSN,NS,(2)
i,Q

(

nf + 1,
Q2

m2
,
Q2

µ2

)

+CCSN,PS,(2)
i,Q

(Q2

m2
,
Q2

µ2

)

)

+
nf
∑

l=1

fLO
l+l̄ (nf + 1, µ2) ⊗ CCSN,PS,(2)

i,q

(Q2

m2
,
Q2

µ2

)

+fS,LO
g (nf + 1, µ2) ⊗ CCSN,S,(2)

i,g

(Q2

m2
,
Q2

µ2

)

}]

+a2
s(nf + 1, µ2)

nf
∑

k=1

e2
k fLO

k+k̄(nf + 1, µ2) ⊗ L
HARD,NS,(2)
i,q

(

∆,
Q2

m2

)

. (3.9)

Notice that from the perturbative point of view the heavy quark density
fLO

Q+Q̄ starts in order αs(µ
2) so that after multiplication with CCSN,NS,(2)

i,Q and

CCSN,PS,(2)
i,Q the product becomes of order α3

s(µ
2). Hence these coefficient func-

tions did not appear in the mass factorization relations (2.17)-(2.20) since
the latter are carried out up to order α2

s(µ
2). Since the heavy quark density

in CSN has to be treated on the same footing as the light flavor densities, in
particular after resummation of the terms in lni(µ2/m2), all densities are con-
sidered to start in zeroth order in perturbation theory. This explains the form
of of the above expression. Furthermore the coefficient functions CCSN,NS,(2)

i,Q

and CCSN,PS,(2)
i,Q which originate from parton processes with an heavy quark

in the initial state have not been calculated yet. Therefore we have to ap-
proximate them by the replacements

CCSN,NS,(2)
i,Q

(

nf + 1,
Q2

m2
,
Q2

µ2

)

→ CNS,(2)
i,q

(

nf + 1,
Q2

µ2

)

,
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CCSN,PS,(2)
i,Q

(Q2

m2
,
Q2

µ2

)

→ CCSN,PS,(2)
i,q

(Q2

m2
,
Q2

µ2

)

, (3.10)

respectively. The remaining CSN scheme coefficient functions can be com-
puted via the relations in Eqs. (2.17)-(2.20), which are defined in terms of the
known H ’s and A’s. The light partonic parts of the CNS structure functions
up to second order are given by

FCSN,LIGHT
i (nf , ∆, Q2) =

nf
∑

k=1

e2
k

[

fNNLO
k+k̄ (nf + 1, µ2)CNS,(0)

i,q

+as(nf + 1, µ2)

{

fNLO
k+k̄ (nf + 1, µ2) ⊗ CNS,(1)

i,q (
Q2

µ2
) + fS,NLO

g (nf + 1, µ2)

⊗C̃S,(1)
i,g (

Q2

µ2
)

}

+ a2
s(nf + 1, µ2)

{

fLO
k+k̄(nf + 1, µ2) ⊗

(

CNS,(2)
i,q

(

nf ,
Q2

µ2

)

+CSOFT,NS,(2)
i,q,Q

(

∆,
Q2

m2
,
Q2

µ2

)

)

+
nf
∑

l=1

fLO
l+l̄ (nf + 1, µ2) ⊗ C̃PS,(2)

i,q

(Q2

µ2

)

+fS,LO
g (nf + 1, µ2) ⊗ C̃S,(2)

i,g

(Q2

µ2

)

}]

, (3.11)

with

CSOFT,NS,(2)
i,q,Q

(

∆,
Q2

m2
,
Q2

µ2

)

= L
SOFT,NS,(2)
i,q,Q

(

∆,
Q2

m2

)

+
(

F (2)(Q2, m2)

−A
NS,(2)
qq,Q

( µ2

m2
)

)

CNS,(0)
i,q + β0,Q ln

(

µ2

m2

)

CNS,(1)
i,q

(Q2

µ2

)

(3.12)

For the BMSN scheme we need the expression for FEXACT
i,Q as defined above

Eq. (2.39)

FEXACT
i,Q (nf , ∆, Q2, m2) = e2

Q

[

as(nf , µ
2)fS,NLO

g (nf , µ
2) ⊗ H

S,(1)
i,g

(Q2

m2

)

+a2
s(nf , µ

2)

{ nf
∑

k=1

fLO
k+k̄(nf , µ

2) ⊗ H
PS,(2)
i,q

(Q2

m2
,
Q2

µ2

)
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+fS,LO
g (nf , µ

2) ⊗ H
S,(2)
i,g

(Q2

m2
,
Q2

µ2

)

}]

+a2
s(nf , µ

2)
nf
∑

k=1

e2
kf

LO
k+k̄(nf , µ

2) ⊗ L
HARD,NS,(2)
i,q

(

∆,
Q2

m2

)

. (3.13)

If we choose the maximum ∆ = s (defined in the figure caption for Fig. 5),

we get L
HARD,NS,(2)
i,q = 0. On the other hand if the minimum value is adopted

i.e. ∆ = 4m2 one gets L
HARD,NS,(2)
i,q = L

NS,(2)
i,q and FEXACT

i,Q becomes equal
to the conventional expression given in Eq. (2.6). The structure function
FASYMP

i,Q is obtained from the expression above by replacing the exact co-
efficient functions by their asymptotic analogues. Furthermore to calculate
FBMSN

i,Q in Eq. (2.39) we need

FPDF
i,Q (nf + 1, ∆, Q2, m2) = e2

Q

[

fNNLO
Q+Q̄ (nf + 1, µ2)CNS,(0)

i,q

+as(nf + 1, µ2)

{

fNLO
Q+Q̄(nf + 1, µ2) ⊗ CNS,(1)

i,q (
Q2

µ2
)

+fS,NLO
g (nf + 1, µ2) ⊗ C̃S,(1)

i,g (
Q2

µ2
)

}

+a2
s(nf + 1, µ2)

{

fLO
Q+Q̄(nf + 1, µ2) ⊗

(

CNS,(2)
i,q (nf + 1,

Q2

µ2
)

+C̃PS,(2)
i,q

(Q2

µ2

)

)

+
nf
∑

l=1

fLO
l+l̄ (nf + 1, µ2)

)

⊗ C̃PS,(2)
i,q

(Q2

µ2

)

+fS,LO
g (nf + 1, µ2) ⊗ C̃S,(2)

i,g (
Q2

µ2
)

}]

+a2
s(nf + 1, µ2)

nf
∑

k=1

e2
kf

LO
k+k̄(nf , µ

2) ⊗ L
HARD,ASYMP,NS,(2)
i,q

(

∆,
Q2

m2

)

.

(3.14)
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Finally up to order α2
s, Eq. (2.41) becomes

FBMSN,LIGHT
i (nf + 1, ∆, Q2) =

nf
∑

k=1

e2
k

[

fNNLO
k+k̄ (nf + 1, µ2)CNS,(0)

i,q

+as(nf + 1, µ2)

{

fNLO
k+k̄ (nf + 1, µ2) ⊗ CNS,(1)

i,q (
Q2

µ2
) + fS,NLO

g (nf + 1, µ2)

⊗C̃S,(1)
i,g (

Q2

µ2
)

}

+ a2
s(nf + 1, µ2)

{

fLO
k+k̄(nf + 1, µ2) ⊗ CNS,(2)

i,q (nf + 1,
Q2

µ2
)

+
nf
∑

l=1

fLO
l+l̄ (nf + 1, µ2) ⊗ C̃PS,(2)

i,q (
Q2

µ2
) + fS,LO

g (nf + 1, µ2) ⊗ C̃S,(2)
i,g (

Q2

µ2
)

}]

+a2
s(nf + 1, µ2)

nf
∑

k=1

e2
kf

LO
k+k̄(nf , µ

2) ⊗
[

L
SOFT,NS,(2)
i,q

(

∆,
Q2

m2

)

−L
ASYMP,NS,(2)
i,q

(Q2

m2

)

+
(

F (2)(Q2, m2) − FASYMP,(2)(Q2, m2)
)

CNS,(0)
i,q

]

.

(3.15)

Notice that we have the relations

CNS,(2)
i,q (nf + 1,

Q2

µ2
) = CNS,(2)

i,q (nf ,
Q2

µ2
) + CNS,(2)

i,q,Q (
Q2

µ2
) , (3.16)

with

CNS,(2)
i,q,Q (

Q2

µ2
) = L

ASYMP,NS,(2)
i,q (

Q2

m2
) +

(

FASYMP,(2)(Q2, m2)

−A
NS,(2)
qq,Q (

µ2

m2
)
)

CNS,(0)
i,q + β0,Q ln(

µ2

m2
)CNS,(1)

i,q (
Q2

µ2
) . (3.17)

The first and second terms in the expression above cancel the third last and
final term in Eq. (3.15). The result is then equal to CSOFT,NS,(2)

i,q,Q in Eq.
(3.11) in the limit Q2 ≫ m2. The form of the above structure functions
also suppresses higher order terms beyond α2

s arising from the three flavor
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number parton densities since the latter also contain terms proportional to
αs and higher. This becomes apparent if one takes the Nth moments of the
densities. For instance we observe the following behavior up to NNLO in the
non-singlet case

fLO,(N)
q (µ2) ∼

[

αs(µ
2)

αs(µ2
0)

]γ
(0)
qq /2β0

fLO,(N)
q (µ2

0) ,

fNLO,(N)
q (µ2) ∼

[

1 + αs(µ
2)A(1)

q

]

[

αs(µ
2)

αs(µ
2
0)

]γ
(0)
qq /2β0

fNLO,(N)
q (µ2

0) ,

fNNLO,(N)
q (µ2) ∼

[

1 + αs(µ
2)A(1)

q + α2
s(µ

2)A(2)
q

]

[

αs(µ
2)

αs(µ2
0)

]γ
(0)
qq /2β0

×fNNLO,(N)
q (µ2

0) . (3.18)

The choice of the multiplication rules above avoids the appearance of scheme
dependent terms beyond the order in which we want to compute the structure
functions. The above prescription guarantees that for Q2 < m2 we satisfy
the condition Fi,c = FEXACT

i,c (nf ) in both schemes.
In the subsequent part of this section we will only discuss the case where

the heavy quark is the charm quark, i.e. Q = c. Hence in all expressions
above we have to choose nf = 3. Further we have to make a choice for

the cut off ∆ appearing in the coefficient functions L
SOFT,NS,(2)
k,q (k = 2, L).

The δ = (∆ − 4m2)/(s − 4m2) dependence of xL
SOFT,NS,(2)
2,q is shown in Fig.

8, where one notes that it peaks at large x, i.e., near threshold. (The plot

for xL
SOFT,NS,(2)
L,q has a similar shape). After convoluting this function with

the parton densities its contribution to the structure function F LIGHT
2 only

amounts to a few percent at Q2 = 103 (GeV/c)2. At decreasing Q2 the
contribution becomes even smaller. The same holds for LHARD

2,q contributing
to F2,c. Hence the dependence of the structure functions on the value of ∆
will be very small. Therefore in the subsequent analysis we choose ∆ = 10
GeV2. Other choices hardly affect the plots so that our conclusions will be
unaltered.

Next we present the x-dependence of the NNLO charm density (see Eq.
(3.7)) for various values of µ2 in Figs. 9a,b. The latter plot emphasizes the
region 0.01 < x < 1. At µ = m it becomes negative for x < 0.007 which is
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due to the boundary condition in Eq. (2.23) and the momentum sum rule.
When µ > m the density becomes positive over the whole x range. In Figs.
9c and 9d we have shown the charm densities in NLO which are obtained
from [18] and [19] respectively, with an offset scale so that they can easily be
compared with Fig. 9a. The former is constructed in the TR scheme whereas
the latter follows the prescription of ACOT. Both are positive over the whole
x range. Our LO and NLO parameterizations, which are not shown in the
figures, are also positive for all values of x. This property can be traced
back to the boundary conditions which yield in LO and NLO c(x, m2) = 0.
Note that a direct comparison between the charm densities from different
groups is not meaningful because each group fits different data to determine
their respective input three flavor number gluon densities. However it seems
that our charm density, at small µ2, does not rise as steeply as that of the
CTEQ5HQ [19] at small x. It is more similar to the MRST98 (central gluon)
[18] density. In Fig. 10 we make a comparison between our charm density
which evolves according to the renormalization group equation and the one
computed in fixed order perturbation theory (FOPT) via Eq. (2.23). To that
order we have plotted

R(x, µ2) =
cEVOLVED(x, µ2)

cFOPT(x, µ2)
. (3.19)

The density cFOPT is computed up to order α2
s since the OME’s in Eq. (2.26)

are only known up to that order. In Fig. 10a we have shown the ratio in LO.
The latter implies that we have only kept the leading logarithms in ln µ2/m2

in the OME’s which are resummed in all orders in cEVOLVED. The deviation of
R from unity shows the effect of the resummation. The same ratio is shown in
NLO in Fig. 10b where we also included the subleading terms in the OME’s.
Finally if we take into account the non-logarithmic terms in the two-loop
OME’s A

S,(2)
Qg and A

PS,(2)
Qq (2.26) one obtains the NNLO ratio (see Fig. 10c).

The figures reveal that in LO and NLO the effect of the resummation is very
small except near x = 1. This picture changes if we go to NNLO where the
deviation of R from one becomes appreciable when x tends to zero. Here
R can even become negative which happens for µ2 ≈ 3 (GeV/c)2. This
effect is wholly due to the boundary condition c(x, m2) 6= 0 which occurs
beyond NLO. Furthermore the figures reveal that R > 1 at large x whereas
R < 1 at small x. Notice that in Fig. 10c cFOPT(x, µ2) = 0 for x = 0.007
at µ2 = 2 (GeV/c)2 so that R = ∞ which explains the bump in the figure.
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Figure 10c is important because it shows that cEVOLVED(x, µ2) < cFOPT(x, µ2)
at small x. The consequence is that FBMSN

i,c (x, Q2) and FCSN
i,c (x, Q2) will

become smaller than FEXACT
i,c (x, Q2) when Q2 becomes slightly larger than

m2 due to the choice made for the factorization scale in Eq. (2.35). This can
even lead to a negative structure function as will happen for FCSN

L,c which we
will see later on.

Now we present results for the various structure functions. In Fig.11 we
show the charm quark structure functions in NNLO given by FCSN

2,c (nf = 4),
FBMSN

2,c (nf = 4), FPDF
2,c (nf = 4) and FEXACT

2,c (nf = 3) plotted in the region
1 < Q2 < 103 (GeV/c)2 for x = 0.05. The figure reveals that there is
hardly any difference between the BMSN and CSN prescriptions. The curves
in both prescriptions lie between the ones representing FPDF

2,c (nf = 4) and
FEXACT

2,c (nf = 3) except for low Q2. In this region the latter is a little
bit larger than the other ones which is expected from the discussion of the
charm density given above. Notice that in the low Q2 region FPDF

2,c (nf = 4)
becomes negative which means that charm quark electroproduction cannot
be described by this quantity anymore. In Fig. 12 we present the same
plots for x = 0.005. Again one cannot distinguish between FBMSN

2,c (nf = 4)
and FCSN

2,c (nf = 4) but now both are smaller than FEXACT
2,c (nf = 3) over the

whole Q2 range. The latter is even larger than FPDF
2,c (nf = 4) in particular

for Q2 > 50 (GeV/c)2. Further we want to emphasize that due to our
careful treatment of the threshold region there is an excellent cancellation
(to three significant places) between FPDF

2,c (nf = 4) and and FASYMP
2,c (nf = 3)

at very small Q2 so that both FCSN
2,c (nf = 4) and FBMSN

2,c (nf = 4) tend to
FEXACT

2,c (nf = 3). Also at large Q2 we have an excellent cancellation between
FASYMP

2,c (nf = 3) and FEXACT
2,c (nf = 3) so that both FCSN

2,c (nf = 4) and
FBMSN

2,c (nf = 4) tend to FPDF
2,c (nf = 4) (see Eq. (2.44)).

In Fig. 13 we show similar plots as in Fig. 11 but now for the charm
quark longitudinal structure functions. Here we observe a difference between
the plots for FCSN

L,c (nf = 4) and FBMSN
L,c (nf = 4) in the region m2

c < Q2 <
40 (GeV/c)2. In particular the latter tends to FEXACT

L,c (nf = 3) while the
former is larger. Furthermore FPDF

L,c (nf = 3) is considerably larger than
the other three structure functions, which differs from the behavior seen in
Fig. 11. This can be mainly attributed to the gluon density which plays
a more prominant role in FL,c than in F2,c. For x = 0.005 (see Fig. 14)
the difference between the BMSN and the CSN descriptions becomes even
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more conspicuous. In this case FCSN
L,c (nf = 4) becomes negative in the region

m2
c < Q2 < 7 (GeV/c)2 which is unphysical. This effect can be attributed to

the zeroth order longitudinal coefficient function in Eq. (3.9), which behaves

like CCSN,NS,(0)
L,Q = 4m2/Q2 (see [16]), and the non-vanishing charm density at

µ2 = m2. In the case of BMSN the longitudinal coefficient function is equal
to zero in lowest order so that FBMSN

L,c (nf = 4) does not become negative.
In Figs. 15 and 16 we make a comparison between the NLO and the

NNLO structure functions FCSN
2,c (nf = 4) and FBMSN

2,c (nf = 4). Both pre-
scriptions i.e. CSN and BMSN lead to the same result in NNLO. However
while going from NLO to NNLO the the structure function FCSN

2,c (nf = 4)
decreases whereas FBMSN

2,c (nf = 4) increases a little bit. The differences in
the case of x = 0.005 are even smaller than those observed for x = 0.05.
The same comparison between NLO and NNLO is made for the longitudi-
nal structure functions in Figs. 17 and 18. Here the differences between
NLO and NNLO are much larger than in the case of F2,c in Figs. 15,16. In
NLO FBMSN

L,c (nf = 4) is smaller than the one plotted for NNLO. However
for FCSN

L,c (nf = 4) we see a decrease in the small Q2-region while going from
NLO to NNLO whereas for large Q2 we observe the opposite. In particular
the valley in the region m2

c < Q2 < 7 (GeV/c)2 observed for FCSN
L,c (nf = 4) at

x = 0.005 in NNLO turns into a bump. This is due the boundary condition
on the charm density which in NLO vanishes at µ = mc whereas in NNLO
it is negative at small x-values (see Fig. 10c). From the observations above
one can conclude that the CSN prescription bedevils the threshold (low Q2)
behavior for FL,c due to the non-vanishing zeroth order longitudinal coeffi-

cient function CCSN,NS,(0)
L,Q . This problem is avoided by TR in [10] by imposing

a condition on the structure functions as indicated in Eq. (2.36). Hence
our results for FBMSN

i,c agree reasonably well for i = 2 and i = L with those
presented in NLO by TR in [10]. This is mainly due to the fact that there is
only a small difference between the NLO and NNLO approximations in the
BMSN scheme. It also reveals that the condition in Eq. (2.36) for i = L can
be mimicked by a vanishing zeroth order longitudinal coefficient function.
Note that results for the x-values presented above are representative for the
whole range 5 × 10−5 < x < 0.5.

To summarize the main points of this paper we have discussed two vari-
able flavor number schemes for charm quark electroproduction in NNLO.
They are distinguished by the way mass factorization is implemented. In the
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CSN scheme this is done with respect to the full heavy and light quark struc-
ture functions at finite Q2. In the BMSN scheme the mass factorization is
only applied to the coefficient functions in the large Q2 limit. Both schemes
require three flavor and four flavor number parton densities which satisfy
NNLO matching conditions at a scale µ2 = m2. We have constructed these
densities using our own evolution code. The schemes also require matching
conditions on the coefficient functions which are implemented in this paper.
We have also made a careful analysis of the removal of dangerous terms in
ln(Q2/m2) from the Compton contributions so that both FCSN

i,c (nf + 1) and
FBMSN

i,c (nf + 1) are collinearly safe. We have done this in a way which is
simplest from the theoretical point of view, by implementing a cut ∆ on
the mass of the c − c̄ pair which has to be determined by experiment. This
cut is not required in the fixed order perturbation theory approach given by
FEXACT

i,c in [5] for moderate Q2-values.
Finally we made a careful analysis of the threshold behaviors of FCSN

i,c (nf +
1) and FBMSN

i,c (nf + 1). In order to achieve the required cancellations near
threshold so that they both become equal to FEXACT

i,c (nf ) one must be very
careful to combine terms with the same order in the expansion in the running
coupling constant αs. Therefore technically we require six sets of parton
densities, namely the LO, NLO and NNLO three flavor number sets and the
LO, NLO and NNLO four flavor number sets. However not all the necessary
theoretical inputs are available to us to finish this task. The approximations
we made in this paper were sufficient to provide very clear answers. We
successfully implemented the required cancellations near threshold and the
corresponding limits at large scales came out naturally. Inconsistent sets of
parton densities automatically spoil these cancelations. We did not have to
use matching conditions on derivatives of structure functions as proposed
in [10], which seem very artificial. The numerical results do however end
up quite similar. We have also shown that the CSN scheme defined above
leads to an unnatural behavior of the longitudinal structure function in the
threshold region which is due to a non-vanishing zeroth order coefficient
function. Since there are no other differences between the CSN and BMSN
schemes we recommend the latter because it is less complicated than the
former. In particular it does not need additional coefficient functions other
than the existing heavy quark and light parton coefficient functions available
in the literature.
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Appendix A

In this appendix we present the exact expressions for the heavy quark coef-
ficient functions L

(2)
i,q corresponding to the Compton process in Fig. 5 when

there is a cut ∆ on the invariant mass sQQ̄ of the heavy quark pair. As
explained in [15] the calculation is straightforward because one can first inte-
grate over the heavy quark momenta in the final state without affecting the
momentum of the remaining light quark. The phase space integrals are the
same as the ones obtained for the process γ(q)+q(k1) → g∗+q (g∗ → Q+Q̄)
where the gluon becomes virtual. In the expressions for the complete inte-
gration over the virtual mass sQQ̄ of the gluon (see Fig. 5) one integrates
over the range 4 m2 ≤ sQQ̄ ≤ s with s = (q +k1)

2. The resulting expressions,

called L
r,(2)
i,q with r = NS, S and i = 2, L are presented in appendix A of

[15]. Notice that up to order α2
s there is no difference between singlet and

non-singlet so that L
NS,(2)
i,q = L

S,(2)
i,q . If we limit the range of integration to

4 m2 ≤ sQQ̄ ≤ ∆ one obtains

L
SOFT,NS,(2)
L,q (z, ∆,

Q2

m2
) = CFTf

{

96a2(s)z(1 − z)2
[

L1(L2 + L4 + L5)

−2(DIL1 − DIL2 − DIL3 + DIL4)
]

− 32a2(s)[1 + 3(1 − z)

−6(1 − z)2]L1 +
16

3
z
[

1 − 26a(s)(1 − z) + 88a2(s)(1 − z)2
] L3

sq2

−256

3
b(∆)a(s)z(1 − z)(1 − d(∆))L6 +

64

3
b(∆)a(s)

[

2 + 10(1 − z)

−14(1 − z)2 − d(∆)
(

2 − (1 − z) − 3(1 − z)2
)]

−128b(∆)d(∆)a2(s)z(1 − z)2(1 + 2d(∆))L6

+
64

3
b(∆)d(∆)a2(s)

(

1 + 2d(∆)
)[

1 + 3(1 − z) − 6(1 − z)2
]

−32

3
b(∆)z +

16

9
b3(∆)z

}

, (A.1)

L
SOFT,NS,(2)
2,q (z, ∆,

Q2

m2
) = CFTf

{

(4

3

1 + z2

1 − z
− 16a2(s)(1 − z)[1

−9(1 − z) + 9(1 − z)2]
)

[L1(L2 + L4 + L5) − 2(DIL1 − DIL2
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−DIL3 + DIL4)] −
(8

3
− 4

1 − z
+ 8a2(s)[2 + 18(1 − z)

−36(1 − z)2 +
1

1 − z
]
)

L1 +
(8

9
[28 − 17(1 − z) − 19

1 − z
]

+
16

9
a(s)[61 − 160(1 − z) + 128(1 − z)2]

−64

9
a2(s)(1 − z)[23 − 104(1 − z) + 94(1 − z)2]

) L3

sq2

+
64

3
b(∆)a(s)

[[

2 − 7(1 − z) + 6(1 − z)2
]

(1 − d(∆))

+d(∆)a(s)(1 − z)[1 − 9(1 − z) + 9(1 − z)2](1 + 2d(∆))
]

L6

+
8

9
b(∆)

(

6 − b2(∆)
)[

2 − (1 − z) − 2

1 − z

]

L6

−32

3
b(∆)d(∆)a(s)

[

7 − 3(1 − z) − 9(1 − z)2 − 1

1 − z

]

−32

9
b(∆)a(s)

[

2 − 95(1 − z) + 121(1 − z)2 +
3

1 − z

]

+
16

3
b(∆)d(∆)a2(s)

(

1 + 2d(∆)
)[

2 + 18(1 − z)

−36(1 − z)2 +
1

1 − z

]

− 8

9
b(∆)

[

50 − 34(1 − z) − 29

1 − z

]

+
4

27
b3(∆)

[

38 − 28(1 − z) − 17

1 − z

]

}

, (A.2)

where the partonic scaling variable is equal to z = Q2/(2q ·k1) = Q2/(s+Q2),
Further we have defined

ξ =
Q2

m2
, sq1 =

√

1 − 4
z

(1 − z)ξ
, sq2 =

√

1 − 4
z

ξ
,

a(s) =
m2

s
=

z

(1 − z)ξ
, b(∆) =

√

1 − 4
m2

∆
, d(∆) =

∆

4 m2

L1 = ln
(1 + b(∆)

1 − b(∆)

)

, L2 = ln
(1 + sq2

1 − sq2

)

, L3 = ln
(sq2 + b(∆)

sq2 − b(∆)

)

,

L4 = ln
(1 − z

z2

)

, L5 = ln
(1 − b2(∆)

1 − sq2
1

)

, L6 = ln
(sq2

2 − b2(∆)

z(1 − sq2
1)

)

,

DIL1 = Li2
( (1 − sq2

2)(1 + b(∆))

(1 + sq2)(1 − b2(∆))

)

, DIL2 = Li2
( 1 − sq2

1 + b(∆)

)

,
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DIL3 = Li2
(1 − b(∆)

1 + sq2

)

, DIL4 = Li2
(1 + b(∆)

1 + sq2

)

. (A.3)

The variable ∆, which allows us to distinguish between soft and hard (ob-
servable) heavy quark anti-quark pairs, is in the range 4m2 ≤ ∆ ≤ s. The
variable z is in the range 0 ≤ z ≤ ξ/(ξ + 4).

Note that when ∆ = s one obtains L
SOFT,r,(2)
L,q → L

r,(2)
i,q which are re-

ported in [15]. When the integration range is given by ∆ ≤ sQQ̄ ≤ s we get

L
HARD,r,(2)
i,q which are given by

L
HARD,NS,(2)
i,q (z, ∆,

Q2

m2
) = L

NS,(2)
i,q (z,

Q2

m2
) − L

SOFT,NS,(2)
i,q (z, ∆,

Q2

m2
) . (A.4)

Notice that L
HARD,NS,(2)
i,q is finite in the limit m → 0 so that it does not contain

collinear divergences. The latter can be wholly attributed to L
SOFT,NS,(2)
i,q as

is revealed if one takes the limit Q2 → ∞. In this case the expressions (A.1)
and (A.2) reduce to

L
SOFT,ASYMP,NS,(2)
L,q (z, ∆,

Q2

m2
) = CFTf

[

16

3
z ln

Q2

m2
− 16

3
z ln

(Q2

∆
− z

)

+
32

3
z ln

1 + b(∆)

2
− 80

9
z − 80

9
(b(∆) − 1)z +

16

9
b(∆)

(

b2(∆) − 1
)

z

+b(∆)

{

(64

3

∆

Q2
z2 − 16

∆2

Q4
z3
)

ln
[(Q2

∆
− z

)(1 − z)

z2

]

−16

3

∆

Q2
z
( 2

1 − z
− 4 + 3z

)

+
8

3

∆2

Q4
z2
( 1

(1 − z)2
+

3

1 − z
− 6

)

}]

,(A.5)

and

L
SOFT,ASYMP,NS,(2)
2,q (z, ∆,

Q2

m2
) = CFTf

[

(1 + z2

1 − z

)

{

8

3
ln

Q2

m2
ln
(1 − z

z2

)

+
(8

3
ln

Q2

m2
+

16

3
ln
(1 − z

z2

)

+
8

3
ln

Q2

∆
− 116

9

)

ln
(1 + b(∆)

2

)

+
4

3
ln2 Q2

m2
− 4

3
ln2 Q2

∆
− 8

3
ln

Q2

∆
ln
(1 − z

z2

)

− 8

3
Li2
(∆z(1 + b(∆))

2Q2

)

−8

3
Li2
(1 + b(∆)

2

)

+
8

3
Li2
( 2m2

∆(1 + b(∆))

)

− 58

9
ln

Q2

m2
− 2 ln

Q2

∆
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+4 ln
(Q2

∆
− z

)

− 40

9
ln
(1 − z

z2

)

+
314

27

}

+
(2

3
+

26

3
z
)

ln
Q2

m2

+
(2

3
− 2z

)

ln
Q2

∆
−
(4

3
+

20

3
z
)

ln(
Q2

∆
− z) +

(4

3
+

52

3
z
)

ln
1 + b(∆)

2

−10

9
− 130

9
z + b(∆)

{

[

− 16

3

∆

Q2
z
( 2

1 − z
− 1 − 6z

)

+
8

3

∆2

Q4
z2
( 1

1 − z

−9z
)]

ln
[(Q2

∆
− z

) (1 − z)

z2

]

− 8

3

∆

Q2
z
( 7

1 − z
− 12 + 9z − 1

(1 − z)2

)

+
2

3

∆2

Q4
z2
( 2

(1 − z)2
+

18

1 − z
− 36 +

1

(1 − z)3

)

}

+
(8

9
b(∆)(1 − b2(∆))

+
40

9

(

b(∆) − 1)
)(

1 + z − 2

1 − z

)

ln

(

(Q2

∆
− z

)(1 − z)

z2

)

+
4

27
b(∆)

(

b2(∆) − 1
)(

10 + 28z − 17

1 − z

)

+ (b(∆) − 1)
(

− 344

27

−704

27
z +

628

27

1

1 − z

)

]

(A.6)

respectively. In the limit m → 0 the results above show the same logarithmic
terms in lni(Q2/m2) (i = 1, 2) as the asymptotic expressions for L

r,(2)
i,q given in

Eqs. (D.7) and (D.8) of [15]. Hence the differences between the results there
and the asymptotic expressions above are free of any terms in ln(Q2/m2).

The asymptotic expressions of L
HARD,r,(2)
i,q for Q2 → ∞ are given by

L
HARD,ASYMP,NS,(2)
L,q (z, ∆,

Q2

m2
) = CFTf

[

16

3
z ln

1 − z

z2
+

16

3
z ln

(Q2

∆
− z

)

−32

3
z ln

1 + b(∆)

2
+

16

3
− 40

3
z +

80

9
(b(∆) − 1)z +

16

9
b(∆)

(

1

−b2(∆)
)

z − b(∆)

{

(64

3

∆

Q2
z2 − 16

∆2

Q4
z3
)

ln

(

(Q2

∆
− z

)(1 − z)

z2

)

−16

3

∆

Q2
z
( 2

1 − z
− 4 + 3z

)

+
8

3

∆2

Q4
z2
( 1

(1 − z)2
+

3

1 − z
− 6

)

}]

,

(A.7)

and

L
HARD,ASYMP,,(2)
2,q (z, ∆,

Q2

m2
) = CFTf

[

(1 + z2

1 − z

)

{

4

3
ln2(1 − z)
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−2 ln
(1 − z

z2

)

− 16

3
ln z ln(1 − z) + 6 ln z +

5

3
+

4

3
ln2 Q2

∆

+
8

3
ln

Q2

∆
ln
(1 − z

z2

)

+
(116

9
− 8

3
ln

Q2

m2
− 16

3
ln
(1 − z

z2

)

− 8

3
ln

Q2

∆

)

× ln
(1 + b(∆)

2

)

+
8

3
Li2
(∆z(1 + b(∆))

2Q2

)

+
8

3
Li2
(1 + b(∆)

2

)

− 8

3
ζ(2)

−8

3
Li2(1 − z) − 8

3
Li2
( 2m2

∆(1 + b(∆))

)

+ 2 ln
Q2

∆
− 4 ln

(Q2

∆
− z

)

}

−
(2

3
− 2z

)

ln
Q2

∆
+
(4

3
+

20

3
z
)

ln(
Q2

∆
− z) −

(4

3
+

52

3
z
)

ln
(1 + b(∆)

2

)

+
(2

3
+

26

3
z
)

ln(1 − z) −
(

2 +
46

3
z
)

ln z +
13

3
− 55

3
z + b(∆)

{

[16

3

∆

Q2
z

×
( 2

1 − z
− 1 − 6z

)

− 8

3

∆2

Q4
z2
( 1

1 − z
− 9z)

)]

ln
[(Q2

∆
− z

)(1 − z)

z2

]

+
8

3

∆

Q2
z
( 7

1 − z
− 12 + 9z − 1

(1 − z)2

)

− 2

3

∆2

Q4
z2
( 2

(1 − z)2
+

18

1 − z

−36 +
1

(1 − z)3

)

}

+
(8

9
b(∆)(b2(∆) − 1) +

40

9
(1 − b)

)(

1 + z − 2

1 − z

)

× ln
[(Q2

∆
− z

)(1 − z)

z2

]

+
4

27
b(∆)(1 − b2(∆))

(

10 + 28z − 17

1 − z

)

+(1 − b(∆))
(

− 344

27
− 704

27
z +

628

27

1

1 − z

)

]

(A.8)

respectively. As has been mentioned below Eq. (3) the expressions above
are finite in the limit m → 0 (b → 1) so that they do not contain collinear
divergences.
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Figure Captions

Fig. 1. The lowest-order photon-gluon fusion process γ∗ + g → Q + Q̄ con-
tributing to the coefficient functions H

S,(1)
i,g .

Fig. 2. Some virtual gluon corrections to the process γ∗ + g → Q + Q̄
contributing to the coefficient functions H

S,(2)
i,g .

Fig. 3. The bremsstrahlung process γ∗ + g → Q+ Q̄+ g contributing to the
coefficient functions H

S,(2)
i,g .

Fig. 4. The Bethe-Heitler process γ∗ + q(q̄) → Q + Q̄ + q(q̄) contributing

to the coefficient functions H
PS,(2)
i,q . The light quarks q and the heavy

quarks Q are indicated by dashed and solid lines respectively.

Fig. 5. The Compton process γ∗ + q(q̄) → Q+ Q̄ + q(q̄) contributing to the

coefficient functions L
NS,(2)
i,q . The light quarks q and the heavy quarks

Q are indicated by dashed and solid lines respectively (s = (p + q)2,
sQQ̄ = (p1 + p2)

2 see text).

Fig. 6. The two-loop vertex correction to the process γ∗ + q → q contain-
ing a heavy quark (Q) loop. It contributes to CVIRT,NS,(2)

i,q (Q2/m2) =

F (2)(Q2/m2) C(0)
i,q .

Fig. 7. Order αs corrections to the process γ∗ + Q → Q and the reaction
γ∗ + Q → Q + g contributing to the coefficient functions H

NS,(1)
i,Q .

Fig. 8. The δ = (∆−4m2)/(s−4m2) dependence of xL
SOFT,NS,(2)
2,q (x, Q2/m2, ∆)

at Q2/m2 = 50 (Eq. (A.2)) plotted as a function of x for δ = 1, 0.1,
0.01 and 0.001 respectively.

Fig. 9. (a) The charm density xcNNLO(4, x, µ2) shown in the range 10−5 <
x < 1 for µ2 = 1.96, 2, 3, 4, 5, 10 and 100 in units of (GeV/c)2. (b)
similar plot as in (a) but now for 0.01 < x < 1. For a comparison we
have also shown the NLO results obtained by MRST98 and CTEQ5HQ
for the range 10−5 < x < 1 in (c) and (d) respectively.

Fig. 10. Ratios R(x, µ2) = xcEVOLVED(4, x, µ2)/xcFOPT(4, x, µ2) for the scales
µ2 =2, 3, 4, 5, 10, 100 in units of (GeV/c)2. (a) LO, (b) NLO, (c)
NNLO.
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Fig. 11. The charm quark structure functions FEXACT
2,c (nf = 3) (solid line)

FCSN
2,c (nf = 4), (dot-dashed line) FBMSN

2,c (nf = 4), (dashed line) and
FPDF

2,c (nf = 4), (dotted line) in NNLO for x = 0.05 plotted as functions
of Q2.

Fig. 12. Same as in Fig. 11 but now for x = 0.005.

Fig. 13. The charm quark structure functions FEXACT
L,c (nf = 3) (solid line)

FCSN
L,c (nf = 4), (dot-dashed line) FBMSN

L,c (nf = 4), (dashed line) and
FPDF

L,c (nf = 4), (dotted line) in NNLO for x = 0.05 plotted as functions
of Q2.

Fig. 14. Same as in Fig. 13 but now for x = 0.005.

Fig. 15. The charm quark structure functions FBMSN
2,c (nf = 4) in NLO (solid

line), NNLO (dotted line) for x = 0.05 and FCSN
2,c (nf = 4) in NLO

(dashed line), NNLO (dot-dashed line) for x = 0.05 plotted as functions
of Q2.

Fig. 16. Same as in Fig. 15 but now for x = 0.005.

Fig. 17. The charm quark structure functions FBMSN
L,c (nf = 4) in NLO (solid

line), NNLO (dotted line) for x = 0.005 and FCSN
L,c (nf = 4) in NLO

(dashed line), NNLO (dot-dashed line) for x = 0.05 plotted as functions
of Q2.

Fig. 18. Same as in Fig. 17 but now for x = 0.005.
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